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Abstract. We study an energy-scale dependence of the lepton flavor-mixing matrix in the minimal su-
persymmetric standard model with the effective dimension-five operators, which give Majorana masses
of neutrinos. We analyze the renormalization group equations of the coefficients (κij) of these effective
operators under an approximation that neglects terms of order κ2. We find that only ng − 1 (where ng
is the generation number) real independent parameters in the lepton flavor-mixing matrix depend on the
energy scale. In particular, all the phases in κ are scale-independent.

1 Introduction

Recent neutrino experiments suggest the existence of fla-
vor mixing in the lepton sector [1]–[5]. Studies of the lep-
ton flavor-mixing matrix, which may be called [6] the
Maki–Nakagawa–Sakata (MNS) [7] matrix, have opened
up a new era of the flavor physics. When we consider
models where the lepton flavor-violating interactions arise
from new physics at a high energy scale, it is important to
analyze the energy-scale dependence of the MNS matrix
to obtain information on the new physics. Many authors
analyze their model by using the renormalization group
equations (RGE) [8].

In this paper, we study the energy-scale dependence
of the MNS matrix in the minimal supersymmetric stan-
dard model (MSSM) with effective dimension-five oper-
ators, which give Majorana masses of neutrinos. In this
model, the superpotential of the lepton–Higgs interactions
is

W = ye
ij(HdLi)Ej − 1

2
κij(HuLi)(HuLj) . (1)

Here the indices i, j (= 1 ∼ ng) stand for the generation
number. Li and Ei are chiral superfields of ith generation
lepton doublet and right-handed charged lepton, respec-
tively, and Hu (Hd) is that of the Higgs doublet which
give Dirac masses to the up- (down-)type fermions. The
coefficient κ of the effective dimension-five operator is an
ng × ng complex and symmetric matrix, which gives the
neutrino Majorana mass matrix. When we take the diag-
onal base of the charged-lepton Yukawa coupling ye, κ is
diagonalized by the MNS matrix. All the elements of κ
are naturally small if they are generated effectively by the
new physics at a high energy scale M . One of the most at-
tractive scenarios is the seesaw mechanism [9], where the

small κ of O(1/M) is generated by the heavy right-handed
neutrinos with Majorana masses of O(M).

2 Energy-scale dependence
of the MNS matrix

Let us now consider the renormalization of κ. The wave-
function renormalization of Li is given by L

(0)
i = Z

1/2
ij Lj

and that of the Higgs doublet is given by H
(0)
u = Z

1/2
H Hu.

Then the renormalization of κij is written as

κ
(0)
ij =

(
Z

−1/2
ik Z

−1/2
jl Z−1

H

)
κkl (2)

in supersymmetric theories. Here we adopt an approxi-
mation to neglect loop corrections of O(κ2), which are
sufficiently small because of tiny neutrino masses. If κ is
induced by the seesaw mechanism, this approximation is
consistent with the neglect of terms of O(1/M2). Under
this approximation, Zik is diagonal, Zik = Ziδik + O(κ2),
because there are no lepton flavor-mixing terms except κ
in the MSSM Lagrangian. Therefore (2) reduces to

κ
(0)
ij =

(
Z

−1/2
i Z

−1/2
j Z−1

H

)
κij . (3)

Equation (3) leads to the RGE

d
dt

κij =
(
γi + γj + 2γH

)
κij , (4)

where t is the scaling parameter, which is related to the
renormalization scale µ as t = lnµ. γi and γH are defined
as

γi =
1
2

d
dt

lnZi , γH =
1
2

d
dt

lnZH . (5)



678 N. Haba et al.: Energy-scale dependence of the lepton flavor-mixing matrix

From (4), we obtain the following two consequences:
(1) None of the phases in κ depend on the energy scale.
Using the notation κij ≡ |κij |eiϕij , we rewrite (4) as

d
dt

lnκij =
d
dt

ln |κij | + i
d
dt

ϕij

=
(
γi + γj + 2γH

)
. (6)

Since γi, γj and γH are real, (6) implies

d
dt

ϕij = 0 . (7)

Therefore we can conclude that the arguments of all the
elements of κ are not changed by renormalization group
(RG) evolutions. We should notice that this result does
not necessarily mean that phases of the MNS matrix are
independent of the energy scale, as we will see later.
(2) Only ng − 1 real independent parameters in the MNS
matrix depend on the energy scale. The following combi-
nations of the κ elements,

c2
ij =

κ2
ij

κiiκjj

, (8)

are energy scale-independent because

d
dt

ln

(
κ2

ij

κiiκjj

)

= 2
d
dt

lnκij − d
dt

lnκii − d
dt

lnκjj

= 2
(
γi + γj + 2γH

)− (2γi + 2γH) − (2γj + 2γH
)

= 0 . (9)

Since the off-diagonal elements of the κij (i 6= j) are given
by

κij = cij
√

κiiκjj (i 6= j) , (10)

their energy-scale dependence can be completely deter-
mined by that of the diagonal elements κii. One can always
take the diagonal elements κii to be real by rephasing the
lepton fields1, and once the elements are real, they never
become complex, because of the RGE (7). The RGE of κ
can hence be governed only by ng equations for the real
diagonal elements, κii. The diagonal form of ye is held at
any energy scale because there is no lepton flavor-violating
correction to the RGE of ye up to O(κ). Since the overall
factor of the matrix κ does not affect the MNS matrix,
the energy-scale dependence of the MNS matrix can be
determined by ng − 1 real independent parameters. This
implies that there are (ng − 1)2 = ng(ng − 1) − (ng − 1)
scale-independent relations among the MNS matrix ele-
ments, because the MNS matrix generally has ng(ng − 1)

1 In the base where the charged-lepton Yukawa matrix is
diagonalized, phases of κii can be absorbed by the field re-
definitions as Li → e−iϕii/2Li and Ei → eiϕii/2Ei, where
ϕii = arg(κii)

( a ) ( b ) ( c ) ( d )

Fig. 1a–d. In the standard model, there are four one-loop
diagrams that contribute to the vertex correction of κij . Solid
lines denote the charged leptons, dotted lines denote the Higgs,
and the curved line denotes the Z boson

real independent parameters when neutrinos are Majorana
fermions.

Before closing, let us comment on the validity of our
theorems in the standard model (SM). In non-SUSY mod-
els, nonzero vertex corrections contribute to additional
terms (γv

ij) in the parentheses of the right-hand side of (4),
which are generally neither real nor flavor-independent.
However, in the SM, one can explicitly show that these
corrections are written as [10]

γv
ij = γv

i + γv
j + γv (11)

at the one-loop level, where all of γ in (11) are real. The
diagrams contributing to (11) are shown in Fig. 1. The
diagrams (a), (b), and (c) contribute to γv because these
contributions are independent of the flavors. Since the con-
tribution of the diagram (d) is proportional to (ye

i )
2κij or

(ye
j)

2κij , it depends on only one of the flavor indices, i or
j. Thus it is clear that our theorem is valid in the SM
at the one-loop level when the following substitutions are
made in (4): γi → γi+γv

i , γj → γj +γv
j and γH → γH+γv.

3 An example of the three-generation case

Let us show an example for the case of three generations
(ng = 3). The matrix κ can be parameterized as

κ = κ33


 r1 c12

√
r1r2 c13

√
r1

c12
√

r1r2 r2 c23
√

r2

c13
√

r1 c23
√

r2 1


 , (12)

where
ri ≡ κii

κ33
, (i = 1, 2) . (13)

The complex parameters cij are energy scale-independent.
There are nine degrees of freedom in the complex 3 × 3
matrix κ: three complex constants cij (i 6= j) and three
energy scale-dependent real parameters r1, r2, and κ33.
Since we take a base where ye has a diagonal form at
any energy scale, and since κ33 does not affect the MNS
matrix, only two parameters, r1 and r2, determine the
energy-scale dependence of the MNS matrix. The MNS
matrix has 3(3 − 1) = 6 real independent parameters,
three mixing angles and three phases when neutrinos are
Majorana fermions. On the other hand, the energy depen-
dence of the κ is governed by only two equations, which
are the RGE of r1 and r2. It then follows that there are
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(3 − 1)2 = 4 scale-independent relations among the MNS
matrix elements.

Here we roughly estimate the energy-scale dependence
of r1 and r2 in (13) by using the one-loop RGEs in the
MSSM [10,11]. We can easily show that the RGE of ri is
given by

d
dt

ln ri =
d
dt

ln
κii

κ33
= − 1

8π2

(
y2

τ − y2
i

)
, (i = 1, 2) ,

(14)
where yτ and yi are the Yukawa couplings of τ and an ith
(i = 1, 2) generation charged lepton, respectively, in our
base where the charged-lepton Yukawa matrix ye is diago-
nal. Neglecting the small energy-scale dependence of yi in
the MSSM, we see the magnitude of the right-hand side in
(14) is roughly given by y2

τ (mZ)/8π2 = O(10−6)/cos2 β,
where the Z-boson mass mZ represents the weak scale,
and tanβ = 〈Hu〉/〈Hd〉 is the ratio of the two vacuum
expectation values. This means that the two elements, r1
and r2, change only a little between the weak scale and
the scale where the effective operator κ appears.

We should stress here that this fact does not necessar-
ily result in the tiny energy dependence of the MNS ma-
trix. We can explicitly see the significant RGE corrections
of the MNS matrix in some situations [10,11]. In [11], dras-
tic change of the MNS matrix by the RGE was obtained
when neutrinos of the second and the third generations
had masses of O(eV) with δm2

23 ' 3×10−3 (eV2) [3]. This
situation corresponds to the case of r1 ∼ |c12| ∼ |c13| ∼ 0,
r2 ∼ 1, and |c23| � 1 in (11), where the slight change of r2
near unity can induce the maximal mixing of the second
and the third generations in the MNS matrix.

4 Summary and discussion

In this paper, we studied the energy-scale dependence of
the MNS matrix in the MSSM with the effective dimension-
five operator that gives rise to the neutrino Majorana
masses. The coefficient of the dimension-five operator, κ,
has only small enough components that one can neglect
corrections of O(κ2) in the RGEs. Under this approxi-
mation, we found that none of the phases in κ depend
on the energy scale, and that only ng − 1 real indepen-
dent parameters in the ng × ng MNS matrix depend on
the energy scale. This implies that there are (ng − 1)2 =
ng(ng−1)−(ng−1) scale-independent relations among the
MNS matrix elements, because the MNS matrix generally
has ng(ng − 1) real independent parameters when neutri-
nos are Majorana fermions. These results may be helpful
for the study of lepton flavor physics and the search for
new physics at high energies.

Finally, we discuss the validity of our theorem in other
models with the effective dimension-five operators. In ad-
dition to the smallness of the coefficient matrix elements
κij , the following two assumptions are needed to obtain
the above results: (i) The supersymmetry (SUSY) is
needed for (2) to be obtained,; (ii) for (2) to reduce to (3),
the model should not have additional lepton flavor- vio-
lating terms. Hence our theorem applies in SUSY models

without explicit flavor violating terms in the Lagrangian,
e.g., in the next-to-minimal SUSY standard model
(NMSSM). On the other hand, we cannot directly apply
our analysis to the SM or other non-SUSY models, because
nonzero vertex renormalization generates additional terms
in the right-hand side of (4) which are generally neither
real nor flavor-independent. Nevertheless, one can explic-
itly show that these terms are real and are written as (11)
at the one-loop level in the SM [10]. Therefore our theorem
applies in the SM at the one-loop level.
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Note added in proof: After the present paper was com-
pleted, we received a paper by J. Ellis and S. Lola [12],
who also studied the relation between the renormalization
effects and the MNS matrix in the special case.


